Desalination needs and opportunities in the oil & gas industry

Samer Adham

International Conference on Emerging Water Desalination Technologies in Municipal and Industrial Applications
San Diego, California, USA, August 28-29, 2015
The following presentation includes forward-looking statements. These statements relate to future events, such as anticipated revenues, earnings, business strategies, competitive position or other aspects of our operations or operating results. Actual outcomes and results may differ materially from what is expressed or forecast in such forward-looking statements. These statements are not guarantees of future performance and involve certain risks, uncertainties and assumptions that are difficult to predict such as oil and gas prices; operational hazards and drilling risks; potential failure to achieve, and potential delays in achieving expected reserves or production levels from existing and future oil and gas development projects; unsuccessful exploratory activities; unexpected cost increases or technical difficulties in constructing, maintaining or modifying company facilities; international monetary conditions and exchange controls; potential liability for remedial actions under existing or future environmental regulations or from pending or future litigation; limited access to capital or significantly higher cost of capital related to illiquidity or uncertainty in the domestic or international financial markets; general domestic and international economic and political conditions, as well as changes in tax, environmental and other laws applicable to ConocoPhillips’ business and other economic, business, competitive and/or regulatory factors affecting ConocoPhillips’ business generally as set forth in ConocoPhillips’ filings with the Securities and Exchange Commission (SEC).

Use of non-GAAP financial information – This presentation may include non-GAAP financial measures, which help facilitate comparison of company operating performance across periods and with peer companies. Any non-GAAP measures included herein will be accompanied by a reconciliation to the nearest corresponding GAAP measure in an appendix.

Cautionary Note to U.S. Investors – The SEC permits oil and gas companies, in their filings with the SEC, to disclose only proved, probable and possible reserves. We use the term "resource" in this presentation that the SEC’s guidelines prohibit us from including in filings with the SEC. U.S. investors are urged to consider closely the oil and gas disclosures in our Form 10-K and other reports and filings with the SEC. Copies are available from the SEC and from the ConocoPhillips website.
Produced Water – Volumes, Management and Challenges

Historical PW Treatment

Application of Desalination Technology:
 - Gas/LNG Operations
 - Oil Sands
 - Conventional
 - Unconventional

Final remarks
Water touches most segments of the petroleum industry
Exploration & Production Water Sources

- Fresh Water: 7%
- Ocean: 25%
- Non Fresh Water: 3%
- Produced Water: 65%

Refining Water Sources

- Fresh Water: 7%
- Ocean: 25%
- Process Fresh Water: 25%
- Cooling Water - non fresh: 47%
- Cooling Water - fresh: 25%
Yearly Volume Estimates – Produced Water (PW)

- 3 to 4 barrels of water for every barrel of oil produced

- PW beneficial reuse
 - Water flooding
 - Maintain reservoir pressure
 - Drilling and completion of wells

- Future innovative options??

Non-conventional Resources

Oil Sands

Unconventional Reservoirs

Steam-Assisted Gravity Drainage

Water is critical for unconventional oil production
Oil Sands

- ~2 to 4 bbl of water required per barrel of oil produced
- ~90% of the water recycled back through the process
- ~0.5 bbl make-up water added to produce each barrel of oil

Unconventional

- 50 K – 150 K bbl of water required for hydraulic fracturing
- 15 to 80% of volume recovered as flow back water
- 10 – 1000 bbl/day of PW from each production well

http://albertainnovates.ca/media/20420/sagd_technologies_ogm_lightbown.pdf
http://www.epa.gov/ogwdw000/uic/pdfs/hfresearchstudyfs.pdf
Sample PW Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Oil field(^{(a)})</th>
<th>Gas field(^{(b)})</th>
<th>SAGD(^{(c)})</th>
<th>Coal bed methane field(^{(d)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS, mg/l</td>
<td>40,000-193,000</td>
<td>5,000-50,000</td>
<td>1500-3000</td>
<td>3,500-10,000</td>
</tr>
<tr>
<td>TOC, mg/l</td>
<td>~100</td>
<td>100-800</td>
<td>300-350</td>
<td>~200</td>
</tr>
<tr>
<td>Oil/Grease, mg/l</td>
<td>2-565(^{(e)})</td>
<td>6-60(^{(e)})</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pH</td>
<td>7</td>
<td>3.8</td>
<td>7.9(^{(f)})</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Produced water characteristics are variable

\(^{(a)}\) SPE 126910
\(^{(b)}\) Qatar Gas waste water treatment reuse scope of work
\(^{(c)}\) http://albertainnovates.ca/media/20420/sagd_technologies_ogm_lightbown.pdf
\(^{(d)}\) Oil & Gas Journal, 2009
\(^{(e)}\) Journal of Hazardous material, pp. 530-531, 2009
\(^{(f)}\) http://www.tundrasolutions.ca/files/Evaporators%20in%20SAGD%20DP.pdf
Historical PW Treatment

- PW treatment – limited to suspended solids & dispersed oil/grease removal

- Common technologies adopted:
 - API separators
 - Coalescers
 - Hydrocyclone

- Usage of treated PW limited to
 - Disposal to reinjection wells/discharge to sea
 - Recycling limited to water flooding

* Oil and gas: Water treatment in oil and gas production - does it matters, Filtration + Separation Magazine, 2010
Specific Drivers for Advanced Treatment of PW

➤ Gas/LNG Operations
 ▪ Geological conditions or regulations may limit reinjection

➤ Oil Sands
 ▪ Strict water sourcing and recycling requirements

➤ Conventional Assets – Offshore (Seawater)
 ▪ Scale & souring control or enhance oil recovery

➤ Unconventional Reservoirs
 ▪ Recycling/reuse or volume reduction of PW
Challenges to Treat Produced Water

- Emulsified oils
- High Salinity
- Dissolved Organics
- Trace Metals
- Production Chemicals

New “TOOL BOX” with Advanced Water Treatment Technologies (AWTTs)
Application of Desalination Technology

- **Gas/LNG Operations**
 - Reverse Osmosis (RO)
 - Evaporators

- **Oil Sands**
 - Evaporators

- **Conventional**
 - Reverse Osmosis (RO)
 - Nanofiltration (NF)

- **Unconventional**
 - Evaporators
 - Traditional / Novel Technologies
Application of Desalination Technology

Gas/LNG Operations

- Reverse Osmosis (RO)
- Evaporators
Qatargas

- Process water generated during gas clean-up & liquefaction
- Produced water mixed with process water & injected to disposal wells
- Regulation require reduction of injection water volume for sustainability of reservoir
- Advanced water treatment technologies – MBR, GAC, RO are currently being deployed

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Feed</th>
<th>MBR Permeate (Irrigation)</th>
<th>RO permeate (Desal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD, mg/L</td>
<td>710</td>
<td>100</td>
<td>Neg</td>
</tr>
<tr>
<td>TSS, mg/L</td>
<td>15</td>
<td>25</td>
<td>Neg</td>
</tr>
<tr>
<td>TDS, mg/L</td>
<td>850</td>
<td>2000</td>
<td>23</td>
</tr>
</tbody>
</table>
Qatargas – Advanced Wastewater Treatment Scheme

Process Water (4 ML/day)

- De-oiler
- H₂S removal
- Membrane Bioreactor
- Granular Activated Carbon
- Reverse Osmosis

Effluent

Irrigation

Permeate

Boiler Feed

Produced Water

RO Concentrate 40%

Deep well Injection
Qatargas – Bench Scale Investigation

- Characterized water streams & provided recommendation for design
- Installed 4 parallel MBRs to assess water biodegradability (QNRF Fund)
- Tested process water at various operating conditions
- Initial bench-scale data showed 50 - 65% COD removal
- MBR permeate was fed to bench scale RO system
- >97% salt rejection with stable flux of 24 LMH
Australia - APLNG

- In Coal Seam Gas (CSG) production, large volume of water are generated
- Regulations prevent salt water disposal wells
- RO technology is used for desalination & concentrate discharged to evaporation ponds
- Evaporators are under consideration to increase recovery

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RO Feed</th>
<th>RO Permeate</th>
<th>RO Concentrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium, mg/L</td>
<td>1645</td>
<td>32.9</td>
<td>16450</td>
</tr>
<tr>
<td>Chloride, mg/L</td>
<td>1317</td>
<td>26</td>
<td>13170</td>
</tr>
<tr>
<td>Alkalinity, mg/L as CaCO₃</td>
<td>1871</td>
<td>37</td>
<td>18710</td>
</tr>
<tr>
<td>TDS, mg/L</td>
<td>4137</td>
<td>83</td>
<td>41370</td>
</tr>
</tbody>
</table>

Salt rejection: 98%, Recovery = 90%, CF = 10
Australia – APLNG Project Locations

Spring Gully
12 ML/d

Reedy Creek
40 ML/d

Talinga
20 ML/d

Condabri
40 ML/d
APLNG – Treatment Schemes

Disk Filter → Microfiltration → Ion Exchange → Reverse Osmosis → Evaporation Ponds

Permeate
Irrigation / Aquifer Recharge

* Evaporators Under consideration in COP, installed by other operators
APLNG – Reedy Creek Treatment Facility
Application of Desalination Technology

Gas/LNG Operations
- Reverse Osmosis (RO)
- Evaporators

Oil Sands
- Evaporators
Oil Sands – Surmont

- Water in the form of steam is used to heat the bitumen
- Hot oil & produced water are then separated
- Following treatment schemes are used to treat deoiled PW:
 - Lime softener (silica removal, partial Ca & Mg removal)
 - Weak acid cation exchange (Complete Ca & Mg removal)
 - Once through steam generator (OTSG)
- The blow down of OTSG is sent to vapor liquid separator & recycled
Oil Sands – Conventional Treatment Schemes

Deoiled produced water → Warm Lime softening → Filter → Weak Acid Cation Exchange → Once Thru Steam Generator → Vapor Liquid Separators

- Sludge Disposal
- Filter waste
- Regeneration waste
- Makeup water
- Blow down Recycle
- Blow down
- Steam
Oil Sands – Advanced Treatment Schemes

Falling Film Evaporators

Drum Boilers

Deoiled produced water

Makeup water

Blow down

Steam

Blow down disposal
Evaporators - Advantages

- Reduced footprint
- Distillate quality water for boilers
- High efficiency drum boilers
- Physical chemical process is eliminated
- Elimination of vapor-liquid separators
Application of Desalination Technology

Gas/LNG Operations
- Reverse Osmosis (RO)
- Evaporators

Oil Sands
- Evaporators

Conventional
- Reverse Osmosis (RO)
- Nanofiltration (NF)
Sulfate Removal

- Seawater is used for water flooding to maintain reservoir pressure
- Scaling may form due to barium sulfate formation
- Presence of sulphate reducing bacteria can lead to reservoir souring
- Desulfating of seawater by nanofiltration (NF) membranes
- DOW had major market share for NF - patent expired 2011
Salinity Adjustment

- Based on core studies in clay, injection of low salinity water increases oil recovery
- In Clair Ridge (UK), full scale low salinity injection project is underway
- Combination of RO and NF membranes are used
- Reservoir specific application:
 - Low salinity, low hardness, low sulfate
 - Low salinity, medium hardness, low sulfate
 - Medium to high salinity, low hardness, low sulfate
 - High salinity, ultra-low hardness, low sulfate
Clair Ridge Treatment Scheme

Seawater \rightarrow Coarse Filters \rightarrow UF Membrane Pretreatment \rightarrow Membrane Desalination \rightarrow De-aeration \rightarrow Well Injection

Cl_2
Application of Desalination Technology

- Gas/LNG Operations
 - Reverse Osmosis (RO)
 - Evaporators

- Oil Sands
 - Evaporators

- Conventional
 - Reverse Osmosis (RO)
 - Nanofiltration (NF)

- Unconventional
 - Evaporators
 - Traditional / Novel Technologies
- New frontier field development to unlock oil/gas resources by horizontal drilling and hydraulic fracturing

- Site specific challenges:
 - Access to fresh or saline water sources
 - Volume of flowback & PW after fracking
 - PW quality & salinity
 - Availability of salt water disposal wells
 - Trucking - traffic control & spillage concerns

- Fit for purpose water solutions
Evaporators gained share in Marcellus play (PA) as potential desalination technology – PW volume reduction

COP addresses following concerns for PW recycle (TX):
 - H$_2$S (souring)
 - Iron (solids)

H$_2$S removal by H$_2$O$_2$/ClO$_2$ followed by filtration

Iron removal by either H$_2$O$_2$ or caustic followed by precipitation
PW Recycle – Texas

Produced Water

- Oxidant addition
- Caustic addition

Reaction tank → Clarification → Filtration → Frac tank

Biocide

Pad
PW/Hypersaline Groundwater Treatment

- Advanced treatment technologies were evaluated:
 - Ion Exchange: selective boron removal from hypersaline GW
 - Membrane Distillation: salinity removal of hypersaline GW
 - Humidification – Dehumidification (HDH): minimize volume of PW and/or MD brine
Membrane Distillation - Qatar

Pretreatment/Chemicals

Sea water

Thermal Desalination Plant

Fresh water

Hot Brine

Membrane Distillation

Brine

Sea water
Forward Osmosis - Qatar

- Volume reduction of produced/process water by osmotic dilution
- Concentrated brine from thermal desalination plants serves as draw solution
- Bench-scale testing at GWSC (QNRF- Fund)
Final Remarks

Water management is an integral part of successful O&G production

- PW volumes will continue to increase and regulations/water scarcity will drive more advanced treatment/desalination

- Reverse osmosis & thermal evaporators are currently installed for PW treatment

- Fit for purpose treatment solutions are required based on site specific challenges for shale play

- Novel technologies (e.g., MD, FO, HDH, etc.) may be feasible for niche applications